
7.4. TRY-EXCEPT STATEMENTS 197

7.4 Try-Except Statements

In programming terminology an exception is a terminal event, typically caused
either by an error in the code or by an unexpected input from the user. The
usual behavior of a program in the event of an exception is to crash. The
try−except statement allows you to catch exceptions before they cause your
program to crash. The form of this statement is

try :
<the try−b l o ck o f code>

except :
<the except−b l o ck o f code>

When this statement is executed, the system executes the try-block. If this
block of code causes no problems the except-block is ignored. However, if the
try-block causes an error the system executes the except-block. The except-
block should make up in some way for the fact that the try-block did not execute
correctly.

For example, consider the following program:

def main () :
done = Fa l s e
while not done :

x = eval (input (” Ente r a number : ”))
i f x < 0 :

done = True
else :

print (”100/%d = %d” %(x , 100/ x))
main ()

Program 7.4.1: A program that generates an exception

If the user enters a number such as 4 the program outputs ”100/4=25”. If
the user enters a negative number the program terminates. However, if the user
enters 0 the program crashes. We can use a try−except statement to avoid
this as follows:

198

def main () :
done = Fa l s e
while not done :

try :
x = eval (input (” Ente r a number : ”))
i f x < 0 :

done = True
else :

print (”100/%d = %d” %(x , 100/ x))
except :

print (” I can ’ t d i v i d e by tha t . ”)

main ()

Program 7.4.2: A fix for the previous program

Now if the user enters a 0 the program responds with ”I can’t divide by that.”
The program goes back to the top of the input loop and asks for another number.
There is no crash and the program continues to function.

It is possible to make except-clauses respond only to specific types of ex-
ceptions. For example, the exception that is raised when we divide by 0 is called
a ZeroDivisionError . If we make the except-clause

except Z e r oD i v i s i o n E r r o r :

then the block of code for this clause will be executed only for divisions by zero;
any other type of exception will not be handled by this clause. Here is a third
version of the program:

7.4. TRY-EXCEPT STATEMENTS 199

def main () :
done = Fa l s e
while not done :

try :
x = eval (input (” Ente r a number : ”))
i f x < 0 :

done = True
else :

print (”100/%d = %d” %(x , 100/ x))
except Z e r oD i v i s i o n E r r o r :

print (” I can ’ t d i v i d e by tha t . ”)
except NameError :

print (” I s a i d a NUMBER, doo fus . ”)
except :

print (”Now, tha t ’ s j u s t dumb . ”)
main ()

Program 7.4.3: Catching specific exceptions

Now, if the user enters 4 the program responds ”100/4=25” If the user enters
0 the program responds ”I can’t divide by that.” If the user enters the string
”ten” the program responds ”I said a NUMBER, doofus.” Finally, if the user
enters something silly like ”23 skidoo” the program responds ”Now, that is just
dumb.”

